2340 independent reflections

 $R_{\rm int} = 0.023$

2260 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1H-Indol-3-yl)-2'-(1H-indol-3-ylmethylene)acetohydrazide

Hapipah M. Ali, Jamaludin Nazzatush Shimar and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 3 July 2007; accepted 4 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.034; *wR* factor = 0.100; data-to-parameter ratio = 8.3.

The molecules of the title compound, C₁₉H₁₆N₄O, are linked into a three-dimensional architecture by N-H···O hydrogen bonds.

Related literature

For a related crystal structure, see Ali et al. (2007).

Experimental

Crystal data

 $C_{19}H_{16}N_4O$ $M_r = 316.36$ Monoclinic, Cc a = 14.0350 (2) Å b = 14.4517 (2) Å c = 8.1372 (1) Å $\beta = 102.193 (1)^{\circ}$

V = 1613.23 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 (2) K $0.60 \times 0.15 \times 0.10 \; \mathrm{mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: none 12370 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.100$	independent and constrained
S = 1.17	refinement
2340 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
281 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
17 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N_{3} - H_{3}N_{1} \cdots OI = 0.87(1) = 1.97(1) = 2.808(2)$	$N1 - H1N \cdots O1^{i}$	0.88 (1)	1.98 (1)	2.848 (2)	174 (3)
	$N3 - H3N \cdots O1^{ii}$	0.87 (1)	1.97 (1)	2.808 (2)	163 (2)

Symmetry codes: (i) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $x, -y + 1, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the University of Malava (grant No. F0263/2007B) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2473).

References

Ali, H. M., Nazzatush Shimar, J., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63. o1807-o1808.

Barbour, L. J. (2001). J. Supramol. Chem., 1, 189-191.

Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12a). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, o3459 [doi:10.1107/S1600536807032655]

2-(1*H*-Indol-3-yl)-2'-(1*H*-indol-3-ylmethylene)acetohydrazide

H. M. Ali, J. Nazzatush Shimar and S. W. Ng

Comment

A previous study reported 2'-[(5-chloro-1*H*-indol-3-yl)methylene]-2-(1*H*-indol-3-yl)acetohydrazide, a compound that is N–H···O hydrogen bonded into a three-dimensional network (Ali *et al.*, 2007). Although there are three possible donor sites, the site belonging to the indolyl ring that is linked to the methylene unit is not involved in the H bond interactions. A similar type of hydrogen bonding (Table 1) is found in the unsubstituted title compound, (I), (Fig. 1).

Experimental

Indol-3-yl-acetylhydrazine (0.30 g, 1.6 mmol) and indol-3-ylcarboxaldehyde (0.20 g, 1.6 mmol) were heated in ethanol (50 ml) for 2 h. The solution was filtered; slow evaporation of the solvent yielded faint yellow needles of (I).

Refinement

Anomalouse dispersion was negligible and Friedel pairs were merged before refinement. All hydrogen atoms were located in difference Fourier maps, and were refined with distance restraints C—H = 1.00 ± 0.01 Å and N–H = 0.88 ± 0.01 Å. Their U_{iso} values were freely refined. Friedel pairs were merged.

Figures

Fig. 1. View of (I) with displacement ellipsoids drawn at the 70% probability level, and H atoms as spheres of arbitrary radius.

2-(1H-Indol-3-yl)-2'-(1H-indol-3-ylmethylene)acetohydrazide

Crystal data	
C ₁₉ H ₁₆ N ₄ O	$F_{000} = 664$
$M_r = 316.36$	$D_{\rm x} = 1.303 {\rm ~Mg~m}^{-3}$
Monoclinic, Cc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 8692 reflections
a = 14.0350 (2) Å	$\theta = 2.8 - 30.2^{\circ}$
<i>b</i> = 14.4517 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 8.1372 (1) Å	T = 293 (2) K
$\beta = 102.193 \ (1)^{\circ}$	Tapered needle, light yellow
$V = 1613.23 (4) \text{ Å}^3$	$0.60\times0.15\times0.10\ mm$

Z = 4

Data collection

2260 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.023$
$\theta_{\text{max}} = 30.0^{\circ}$
$\theta_{\min} = 2.1^{\circ}$
$h = -19 \rightarrow 19$
$k = -20 \rightarrow 20$
$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.0767P)^2 + 0.0497P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.100$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.17	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
2340 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
281 parameters	Extinction correction: none
17 restraints	Absolute structure: Friedel pairs were merged
Primary atom site location: structure-invariant direct methods	Flack parameter: ?
C 1	D

Secondary atom site location: difference Fourier map Rogers parameter: ?

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.50000 (8)	0.58900 (8)	0.50001 (14)	0.0172 (2)
N1	0.86357 (11)	0.22337 (10)	0.56290 (18)	0.0207 (3)
N2	0.62106 (9)	0.44789 (8)	0.44976 (15)	0.0139 (2)
N3	0.55394 (9)	0.49082 (9)	0.32082 (15)	0.0143 (2)
N4	0.20100 (11)	0.47912 (12)	0.2027 (2)	0.0279 (3)
C1	0.87353 (11)	0.28098 (11)	0.7011 (2)	0.0176 (3)
C2	0.94407 (13)	0.28031 (13)	0.8506 (2)	0.0236 (3)
C3	0.93560 (13)	0.34678 (13)	0.9698 (2)	0.0260 (3)
C4	0.85926 (14)	0.41173 (13)	0.9415 (2)	0.0247 (3)
C5	0.79050 (12)	0.41325 (11)	0.7917 (2)	0.0193 (3)
C6	0.79757 (10)	0.34736 (10)	0.66815 (18)	0.0150 (3)
C7	0.78624 (12)	0.25238 (12)	0.44324 (19)	0.0204 (3)
C8	0.74261 (11)	0.32866 (10)	0.50057 (19)	0.0160 (3)
C9	0.66442 (11)	0.37875 (10)	0.39548 (18)	0.0154 (3)

C10	0.49922 (10)	0.56129 (9)	0.35533 (18)	0.0134 (2)
C11	0.43239 (10)	0.60328 (10)	0.20165 (19)	0.0152 (3)
C12	0.30093 (12)	0.48812 (12)	0.2490 (2)	0.0226 (3)
C13	0.33009 (11)	0.56780 (10)	0.18153 (18)	0.0154 (3)
C14	0.24281 (10)	0.61075 (10)	0.08736 (18)	0.0155 (3)
C15	0.22490 (11)	0.69156 (11)	-0.0099 (2)	0.0193 (3)
C16	0.12907 (13)	0.71310 (12)	-0.0859 (2)	0.0246 (3)
C17	0.05120 (13)	0.65631 (15)	-0.0636 (2)	0.0274 (4)
C18	0.06691 (12)	0.57637 (15)	0.0317 (2)	0.0276 (4)
C19	0.16355 (12)	0.55390 (12)	0.1053 (2)	0.0212 (3)
H1n	0.906 (2)	0.1812 (18)	0.551 (4)	0.046 (8)*
H3n	0.5469 (17)	0.4733 (16)	0.2169 (15)	0.017 (5)*
H4n	0.167 (2)	0.4364 (17)	0.242 (4)	0.041 (8)*
H2	0.9927 (18)	0.2299 (16)	0.860 (4)	0.041 (8)*
Н3	0.9847 (16)	0.348 (2)	1.079 (2)	0.034 (7)*
H4	0.851 (2)	0.4539 (18)	1.034 (3)	0.041 (7)*
H5	0.7363 (14)	0.4593 (15)	0.772 (3)	0.027 (6)*
H7	0.7666 (19)	0.2195 (16)	0.334 (2)	0.026 (6)*
Н9	0.6452 (19)	0.3595 (18)	0.2750 (15)	0.025 (6)*
H11A	0.4299 (18)	0.6713 (7)	0.218 (3)	0.022 (6)*
H11B	0.4619 (17)	0.5947 (18)	0.101 (2)	0.024 (6)*
H12	0.341 (2)	0.439 (2)	0.309 (4)	0.034 (7)*
H15	0.2789 (15)	0.7343 (17)	-0.021 (4)	0.032 (7)*
H16	0.117 (2)	0.7690 (13)	-0.159 (3)	0.037 (8)*
H17	-0.0162 (10)	0.6719 (19)	-0.124 (3)	0.032 (7)*
H18	0.0150 (16)	0.5337 (17)	0.050 (4)	0.037 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0198 (5)	0.0187 (5)	0.0121 (5)	0.0055 (4)	0.0011 (4)	-0.0006 (4)
N1	0.0239 (6)	0.0203 (6)	0.0181 (6)	0.0101 (5)	0.0049 (5)	0.0000 (5)
N2	0.0131 (5)	0.0155 (5)	0.0118 (6)	0.0026 (4)	0.0000 (4)	0.0025 (4)
N3	0.0158 (5)	0.0172 (5)	0.0088 (5)	0.0037 (4)	0.0001 (4)	-0.0002 (4)
N4	0.0196 (7)	0.0330 (8)	0.0278 (7)	-0.0075 (5)	-0.0029 (5)	0.0127 (6)
C1	0.0175 (6)	0.0186 (6)	0.0167 (7)	0.0046 (5)	0.0034 (5)	0.0022 (5)
C2	0.0198 (7)	0.0287 (8)	0.0207 (8)	0.0060 (6)	0.0005 (6)	0.0044 (6)
C3	0.0236 (7)	0.0316 (8)	0.0187 (8)	0.0000 (6)	-0.0046 (6)	-0.0001 (6)
C4	0.0268 (8)	0.0263 (8)	0.0187 (7)	-0.0013 (6)	-0.0007 (6)	-0.0057 (6)
C5	0.0210 (7)	0.0180 (7)	0.0181 (7)	0.0027 (5)	0.0022 (5)	-0.0031 (5)
C6	0.0147 (6)	0.0151 (6)	0.0149 (6)	0.0029 (4)	0.0024 (5)	0.0006 (5)
C7	0.0244 (7)	0.0199 (7)	0.0163 (7)	0.0065 (5)	0.0033 (5)	-0.0023 (5)
C8	0.0174 (6)	0.0157 (6)	0.0141 (6)	0.0040 (5)	0.0017 (5)	-0.0001 (5)
C9	0.0163 (6)	0.0170 (6)	0.0122 (6)	0.0026 (5)	0.0009 (5)	0.0001 (5)
C10	0.0123 (5)	0.0147 (5)	0.0122 (6)	0.0014 (4)	0.0004 (4)	0.0024 (5)
C11	0.0141 (6)	0.0176 (6)	0.0125 (6)	0.0027 (5)	-0.0005 (5)	0.0038 (5)
C12	0.0198 (7)	0.0254 (7)	0.0196 (7)	-0.0031 (6)	-0.0027 (6)	0.0074 (6)
C13	0.0150 (6)	0.0177 (6)	0.0123 (6)	0.0010 (5)	-0.0001 (5)	0.0013 (5)

supplementary materials

C14	0.0149(6)	0.0186 (6)	0.0121 (6)	0.0019 (5)	0.0010 (5)	-0.0014(5)
C15	0.0149(0) 0.0189(7)	0.0195 (6)	0.0121(0) 0.0180(7)	0.0019(5)	0.0010 (5)	0.0014(5)
C16	0.0102(8)	0.0244(7)	0.0246(8)	0.0086(6)	-0.0010(6)	0.0016 (6)
C17	0.0222(0) 0.0174(7)	0.0211(7) 0.0389(9)	0.0210(8)	0.0073 (6)	-0.0018(6)	-0.0001(0)
C18	0.0177(7)	0.0309(9)	0.0251(0)	-0.0075(0)	-0.00010(6)	0.0007(7)
C19	0.0173 (6)	0.0102(9)	0.0230(0)	-0.0019(5)	0.0001(0)	0.0007(7)
CI	0.0175 (0)	0.0279 (0)	0.0170 (7)	0.0017 (3)	0.0005 (5)	0.0032 (0)
Geometric param	neters (Å, °)					
O1—C10		1.2414 (19)	C7—0	C8	1.389	(2)
N1—C7		1.362 (2)	C7—I	H7	0.996	(10)
N1—C1		1.382 (2)	C8—(C9	1.436	(2)
N1—H1n		0.876 (10)	C9—I	H9	1.000	(10)
N2—C9		1.2952 (18)	C10-	-C11	1.522	0 (19)
N2—N3		1.3985 (16)	C11-	-C13	1.501	(2)
N3—C10		1.3405 (18)	C11-	-H11A	0.994	(10)
N3—H3n		0.868 (10)	C11-	-H11B	1.000	(10)
N4—C19		1.377 (2)	C12—	-C13	1.375	(2)
N4—C12		1.379 (2)	C12—	-H12	0.97 ((3)
N4—H4n		0.883 (10)	C13—	-C14	1.441	0 (19)
C1—C2		1.397 (2)	C14—	-C15	1.403	(2)
C1—C6		1 4171 (19)	C14—	-C19	1 415	(2)
C2-C3		1 388 (3)	C15-	-C16	1 392	(2)
C2—H2		0.991(10)	C15-	-H15	0.996	(10)
C3—C4		1.406 (3)	C16-	-C17	1.409	(3)
С3—Н3		1.002 (10)	C16-	-H16	0.998	(10)
C4—C5		1.386 (2)	C17—	-C18	1.383	(3)
C4—H4		0.993 (10)	C17—	-H17	0.994	(10)
C5—C6		1.404 (2)	C18—	-C19	1.400	(2)
С5—Н5		0.998 (10)	C18—	-H18	0.991	(10)
C6—C8		1.443 (2)				
C7—N1—C1		108.94 (12)	N2—	С9—Н9	120.0	(16)
C7—N1—H1n		127 (2)	C8—0	С9—Н9	117.2	(16)
C1—N1—H1n		124 (2)	01—0	C10—N3	123.5	8 (13)
C9—N2—N3		112.15 (12)	01—0	C10—C11	122.0	8 (13)
C10—N3—N2		120.32 (12)	N3—	C10—C11	114.3	1 (13)
C10—N3—H3n		118.3 (16)	C13—	-C11C10	111.2	8 (12)
N2—N3—H3n		121.4 (16)	C13—	-C11—H11A	107.0	(15)
C19—N4—C12		109.00 (14)	C10-	-C11—H11A	108.4	(14)
C19—N4—H4n		126 (2)	C13—	-C11—H11B	114.9	(15)
C12—N4—H4n		124 (2)	C10-	-C11—H11B	109.4	(15)
N1—C1—C2		129.47 (15)	H11A	—C11—H11B	106 (1	2)
N1—C1—C6		108.12 (13)	C13—	-C12—N4	109.9	5 (14)
C2-C1-C6		122.40 (15)	C13—	-C12—H12	128.8	(18)
C3—C2—C1		117.02 (15)	N4—0	С12—Н12	120.8	(18)
С3—С2—Н2		128.1 (19)	C12—	-C13C14	106.3	7 (13)
С1—С2—Н2		114.8 (19)	C12—	-C13C11	126.9	6 (13)
C2—C3—C4		121.48 (15)	C14—	-C13-C11	126.6	7 (13)
С2—С3—Н3		118.9 (17)	C15—	-C14C19	119.3	5 (14)

С4—С3—Н3	119.6 (17)	C15—C14—C13		133.57 (14)
C5—C4—C3	121.32 (16)	C19—C14—C13		107.08 (13)
С5—С4—Н4	119.3 (19)	C16—C15—C14		118.55 (15)
C3—C4—H4	119.2 (19)	C16—C15—H15		120.2 (17)
C4—C5—C6	118.54 (15)	C14—C15—H15		121.2 (17)
C4—C5—H5	121.0 (16)	C15—C16—C17		121.05 (16)
С6—С5—Н5	120.4 (16)	C15-C16-H16		117.9 (17)
C5—C6—C1	119.21 (14)	C17—C16—H16		121.1 (17)
C5—C6—C8	134.37 (14)	C18—C17—C16		121.51 (15)
C1—C6—C8	106.42 (13)	C18—C17—H17		119.1 (17)
N1—C7—C8	110.21 (14)	C16—C17—H17		119.3 (17)
N1—C7—H7	121.4 (15)	C17—C18—C19		117.31 (16)
С8—С7—Н7	128.4 (15)	C17—C18—H18		124.8 (18)
С7—С8—С9	122.39 (14)	C19-C18-H18		117.9 (18)
C7—C8—C6	106.28 (13)	N4—C19—C18		130.20 (16)
C9—C8—C6	131.06 (13)	N4—C19—C14		107.59 (14)
N2—C9—C8	122.73 (13)	C18—C19—C14		122.20 (16)
C9—N2—N3—C10	177.12 (13)	N2—N3—C10—C11		177.81 (12)
C7—N1—C1—C2	-177.43 (18)	O1-C10-C11-C13		-78.13 (17)
C7—N1—C1—C6	1.60 (18)	N3-C10-C11-C13		99.87 (15)
N1—C1—C2—C3	-179.51 (17)	C19—N4—C12—C13		-0.6 (2)
C6—C1—C2—C3	1.6 (3)	N4-C12-C13-C14		-0.1 (2)
C1—C2—C3—C4	0.2 (3)	N4-C12-C13-C11		179.88 (16)
C2—C3—C4—C5	-1.4 (3)	C10-C11-C13-C12		-20.7 (2)
C3—C4—C5—C6	0.8 (3)	C10-C11-C13-C14		159.29 (14)
C4—C5—C6—C1	0.9 (2)	C12—C13—C14—C15		-179.13 (17)
C4—C5—C6—C8	-178.63 (17)	C11—C13—C14—C15		0.9 (3)
N1-C1-C6-C5	178.76 (14)	C12-C13-C14-C19		0.75 (17)
C2—C1—C6—C5	-2.1 (2)	C11—C13—C14—C19		-179.23 (15)
N1—C1—C6—C8	-1.63 (17)	C19—C14—C15—C16		0.0 (2)
C2—C1—C6—C8	177.48 (15)	C13—C14—C15—C16		179.90 (17)
C1—N1—C7—C8	-0.93 (19)	C14—C15—C16—C17		1.2 (2)
N1—C7—C8—C9	174.55 (14)	C15—C16—C17—C18		-1.1 (3)
N1—C7—C8—C6	-0.11 (19)	C16—C17—C18—C19		-0.1 (3)
C5—C6—C8—C7	-179.41 (17)	C12—N4—C19—C18		-178.80 (19)
C1—C6—C8—C7	1.06 (17)	C12—N4—C19—C14		1.1 (2)
C5—C6—C8—C9	6.6 (3)	C17-C18-C19-N4		-178.77 (19)
C1—C6—C8—C9	-172.95 (16)	C17—C18—C19—C14		1.4 (3)
N3—N2—C9—C8	174.31 (13)	C15-C14-C19-N4		178.78 (15)
C7—C8—C9—N2	177.46 (15)	C13-C14-C19-N4		-1.13 (18)
C6—C8—C9—N2	-9.3 (3)	C15—C14—C19—C18		-1.3 (2)
N2—N3—C10—O1	-4.2 (2)	C13—C14—C19—C18		178.77 (16)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N1—H1N····O1 ⁱ	0.88(1)	1.98 (1)	2.848 (2)	174 (3)

0.87(1)

1.97 (1)

2.808 (2)

N3—H3N…O1ⁱⁱ

163 (2)

Symmetry codes: (i) *x*+1/2, *y*-1/2, *z*; (ii) *x*, -*y*+1, *z*-1/2.

